GH1131是一種以鎢、鉬、鈮、氮等元素復合固溶強化的高性能鐵基高溫合金,含鎳量約為28%,但其熱
強性水平卻與GH3044合金。 合金具有良好的熱加工塑性和焊接、冷成型工藝性能。主要品種主要產(chǎn)品 有
冷軋薄板、熱軋中板、棒材、扁鋼和絲材等??捎糜谥谱髟?00~1000℃短時工作的火箭發(fā)動機和在700
病理學750℃長期工作的航空發(fā)動機的高溫部件。
GH1131(GH131)熱處理制度
熱軋板和冷軋薄板為:1130~1170℃,空冷;棒材為:1160℃±10℃,空冷處理。
GH1131(GH131) 品種規(guī)格與狀態(tài)冷軋薄板、熱軋板、棒材、焊絲等。熱軋板和冷軋薄板經(jīng)固溶處理、酸洗、矯正及切邊后供應;棒材不經(jīng)熱處理供應;焊絲于冷拉狀態(tài)、熱處理及酸洗狀態(tài)或半硬態(tài)供應。GH1131(GH131) 熔煉與鑄造工藝合金采用非真空感應爐加電渣重熔或電弧熔煉加電渣重熔工藝生產(chǎn)。GH1131(GH131) 應用概況與特殊要求該合金主要用作火箭發(fā)動機高溫部件。在航空發(fā)動機上,已制成加力燃燒室可調噴口殼體和調節(jié)片等零部件,并投入生產(chǎn)。與同類用途的鎳基合金相比,合金的高溫抗氧化性的組織穩(wěn)定性較差,在700~900℃長期使用后室溫塑性下降,成形性能變差。
GH1131介紹:
型號 GH1131
原型號 GH131
GH1131是一種以鎢、鉬、鈮、氮等原素復合型固溶強化的鐵基高溫合金,含鎳量約為28%,但其熱強性水準卻與GH3044合金合金具備較好的熱加工工藝可塑性和電焊焊接、冷成形使用性能。關鍵種類關鍵設備有冷軋薄板、熱扎板鋼、棒料、鍍鋅扁鋼和絲材等??捎靡灾谱髟?00~1000℃短時間工作中的沖壓發(fā)動機與在700病理生理學750℃長期性工作的飛機發(fā)動機的高溫部件。
合金在固溶狀態(tài)下,基體為單項奧氏體,固溶時間 對晶粒度及性能的影響不大,在 900 t 會出現(xiàn)塑性降 低 現(xiàn) 象 2]。試 驗 采 用 退 火 態(tài) G H 1 1 3 1合 金 ,在 1100 ~ 1170 t 范 圍 內 開 展 熱 處 理 工 藝 研 究 ,試 樣 尺 寸 為 10 m m x 20 m m x 200 m m ,真空固溶熱處理工藝方案 如 表 2 所 示 ,選 取 1100 - 1170 t 溫 度 范 圍 ,分別進行 一 次 、二 次 、三次固溶工藝試驗,充 氣 壓 力 為 2 bar。熱 處 理 后 觀 察 試 樣 的 顯 微 組 織 ,并 測 試 其 室 溫 與 高 溫( 9 0 0丈 )的力學性能。
2 試驗結果與分析
2.1 顯微組織
圖 1 為 G H 11 3 1高溫合金不同固溶工藝試驗后的 顯微組織,可以看出,合金經(jīng)一次真空固溶處理后,組 織晶界清晰,晶 粒 均 勻 完 整 ,且 呈 等 軸 狀 ,晶粒尺寸 3 0 100 p m ,固溶態(tài)組織基本為奧氏體晶粒+ 顆粒狀碳 化物,并伴有少量孿晶,且隨著固溶溫度升高,通過堆垛 層錯生長而形成的孿晶數(shù)量增多i3],晶粒有增大的趨勢。
G H 11 3 1高溫合金經(jīng)兩次真空固溶后顯微組織如 圖 1 (d 〇所 示 ,孿晶數(shù)量較一次固溶明顯增多,且晶 粒有所長大,碳化物顆粒在晶界附近聚集長大 ;在較高 溫度進行二次固溶時碳化物顆粒長大明顯,如 圖 1(f) 所示。由以往結果可知 [I],G H 1 1 3 1合 金 于 9 0 0丈 開 始再結晶,1040 t 再 結 晶 完 成 ;M 6C 在 970 t 達到析 出高峰,隨固溶溫度的升高略有下降,當固溶溫度超過 1100 t 時,M 6C 相逐漸溶解,固溶溫度超過1150 ^C ,僅余 一次碳化物 N bC 以及不規(guī)則塊狀 Z 相。G H 11 3 1高溫 合金經(jīng) 3 次 真 空 固 溶 后 顯 微 組 織 如 圖 l ( g i)所 示 , 固溶后的組織均為奧氏體晶粒,晶界與晶內分布黑色 的顆粒狀碳化物,晶 粒 尺 寸 大 增 至 120 (x m ,部分孿 晶也發(fā)生長大。隨著固溶次數(shù)的增多,孿晶增多,顆粒 碳化物有聚集趨勢,第 一 次 固 溶 后 的 晶 粒 度 6 ~ 8 級 , 經(jīng)兩次及 3 次真空固溶后的晶粒稍有長大趨勢,但晶 粒度維持在 6 8 級 ,并未出現(xiàn)異常增大。
2 . 2 力學性能
G H 1 1 3 1高溫合金經(jīng)多次真空固溶處理后的室溫 力學性能和高溫力學性能見表3 ,經(jīng)一次真空固溶處 理后,隨固溶溫度升高,常溫抗拉強度稍有降低,塑性 提高;1100 t — 次真空固溶后高溫強度稍低,為 182 MPa, 1130 T 固溶時高溫強度為190 MPa,伸長率為7 9 . 6 % ~ 82. 1 % ,隨著固溶溫度的升高,合金的晶粒不斷長大, 高溫抗拉強度增加,這 是 由 于 N bC 在晶界上形成連續(xù) 薄膜,使 得 有 N bC 脆性薄膜的晶界在高溫下對顯微裂 紋的萌生和迅速擴展十分有利 [1]。經(jīng)兩次真空固溶 處理后,室溫抗拉強度有所降低,在 807 ~ 8 1 0 M P a范圍 內,隨著固溶溫度的升高,高溫抗拉強度增加,塑性不 降低。
而 3 次真空固溶處理后室溫抗拉強度稍有降 低 ,低 為 783 MPa,伸 長 率 42. 5 % ; 高溫抗拉強度繼 續(xù)提高,可 達 200 MPa,伸長率保持在70. 5 % ~ 76. 4 % 。 綜合比較,經(jīng) N3-l(1 1 0 0 t + 1 1 3 0 t + 1 1 7 0 T ) 真空 固溶處理后,G H 1 1 3 1 合金的高溫性能較佳。
3 結論
1 GHl 1 3 1高溫合金真空熱處理后表面質量好, 呈銀白色金屬光澤、無氧化,熱處理后可減少酸洗、磨 修工序,替代傳統(tǒng)空氣熱處理具有明顯優(yōu)勢。
2 G H 1 1 3 1 高溫合金隨著真空固溶次數(shù)的增多,晶粒稍有長大趨勢、孿晶增多,經(jīng)多次真空固溶后晶粒 度維持在 6 ~ 8 級 。
3 G H 11 3 1 高溫合金經(jīng)3 次真空固溶處理后,室 溫抗拉強度超過783 MPa,高溫抗拉強度超過194 MPa。 經(jīng) 1100 丈 + 1 1 3 0 T + 1 1 7 0 = (分別保溫 20 min)3 次 真空固溶處理后,室溫抗拉強度為794 MPa,9 0 0 t 高 溫抗拉強度達200 MPa。